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ABSTRACT 

Performance assessments (PAs) for the disposal of low-level radioactive waste have 

traditionally been performed in a deterministic manner, with inputs specified as 
single values as if they carry no uncertainty. Modern PAs, however, explicitly 
incorporate uncertainty through use of probability distributions for inputs instead of 

single values. While this is clearly an improvement, challenges remain in specifying 
appropriate distributions, many of which relate to capturing the appropriate spatial 

and/or temporal scale given the PA model, and matching the scale(s) of data and 
information to that specified by the model. More careful attention to scaling will 
lead to more defensible characterizations of physical variability and uncertainty in 

model inputs, thus leading to more defensible information regarding outcomes of 
interest to be used in decision making, and hence more defensible decisions. This 

work introduces general strategies and considerations for explicitly incorporating 
considerations of scale into distribution development. The strategies are explained 
as a series of steps and then presented with an example that starts to illustrate the 

new statistical concepts. This work frames the problem in terms of hierarchical 
statistical modeling, providing important connections to current statistical 

approaches to formally and rigorously account for temporal and spatial scaling. The 
larger goal is to build a more formal and unified approach to distribution 
development to help teams of modelers, subject matter experts, and statisticians 

work together to develop distributions and justify the choices made in the process, 
ultimately leading to more informed decision-making. Without this rigor, statistical 

distributions are not specified correctly and can have unexpected consequences for 

modeling and sensitivity analysis. 

INTRODUCTION 

Probabilistic performance assessments are an improvement over deterministic 

assessments because they explicitly incorporate uncertainty in inputs rather than 
rely on single values often deemed to be “conservative.” A challenge in 

deterministic assessments is developing and justifying a single value to use as an 
input in the PA model. This requires decisions about how to use available 

information, and how to choose criteria for what is considered a conservative value. 
In fact, in order to devise a conservative value it is difficult not to envision a 
collection of possible values from which a large (or small) value is chosen; that is, a 

distribution is implicitly used in the process of deterministic modeling even if it is 
never formalized as a probability distribution. A conservative value is one in the tail 

of the distribution (right or left, depending on the context), and the tails of the 
distribution are often the most difficult to specify. In a deterministic setting, the 
rest of the distribution is ignored after the conservative value is chosen, thus 
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greatly restricting the information available to inform decision-making. The same 
value can be chosen to represent very different situations that should not be 

treated equally in an assessment. For example, the same value could come from a 
very wide distribution centered on a relatively small value or a very narrow 

distribution centered on a relatively large value. In contrast, probabilistic PA aims 
directly at formalizing the distribution and making the choices underlying it explicit 
and transparent, and then using the entire probability distribution in the 

assessment, thus propagating uncertainty to the endpoints (e.g., performance 
objectives), and ultimately to decision-making. Making the distribution development 

explicit, rather than implicit as in deterministic assessments, forces all information 
and decisions to also be made explicit, promoting transparency and critique, and in 
turn leading to more defensible assessments. Probabilistic PA may seem more 

complicated on the surface, but in reality it is simply formalizing and accounting for 

the things that are “swept under the rug” in deterministic PA. 

Most PA models for radioactive waste disposal are now developed with at least 
some probabilistic flavor. The move towards fully probabilistic PA modeling appears 

to have momentum, but still a hybrid approach of deterministic and probabilistic 
approaches are used, despite the conundrums this creates. The hybrid approach 

often uses deterministic modeling for decision-making or compliance determination 
and probabilistic modeling only for sensitivity analysis. This is a “fool’s errand” 
because it creates two models that are not fully compatible, in which case the 

decisions associated with each model are also not compatible, and are hence 

mutually incoherent. 

Now that probabilistic PA modeling is more widely accepted, it has become more 
important to pay close attention to some critical—and commonly overlooked—

details of distribution development in order to make the process explicit and 
transparent. One such detail is the challenge of capturing appropriate spatial and 

temporal scales of the input variables, particularly given the differences often seen 
in scale between the available data and that needed to match the spatial and 
temporal domain of a PA model. PAs must often use data representing very short 

and recent time scales, especially compared to the time frame over which the 
model will eventually be run. The same basic concerns exist over the spatial domain 

of the model compared to that of available data. 

The process of developing probabilistic PA models requires statistical input at 

several stages, including site assessment, development of the conceptual site 
model (CSM), and planning for data collection and information gathering to inform 

the distributions. The CSM describes the relevant features, events and processes by 
which radionuclides can be transported from the disposal system to the accessible 
environment, and is used as the basis for developing the model structure for the 

system. The model consists of input variables (often called parameters) and 
relationships among these variables. A probability distribution is developed for each 

input to capture the current state of knowledge regarding the variable, but at the 
scale at which it will be used in the model. Distributions can be constructed based 
on site-specific data, data from other locations (secondary), literature review 

information/data, model abstraction, and/or expert elicitation. All these sources are 
referred to throughout this paper as information and/or data that need to be 
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evaluated for spatial and temporal scales, though an entire paper could be written 
on the challenges introduced by the use of different sources of information to 

inform distributions. 

Information for each variable, regardless of source, should be used coherently with 
the CSM and modeling assumptions to develop probability distributions for the input 
variables. This should be done in consideration of the multivariate relationships, 

correlations, and spatial and temporal scales of the data in the context of a specific 
PA model. Depending on the source or type of the data/information, different 

statistical methods may be used to develop the probability distribution, and then to 
efficiently sample from the distributions in the subsequent simulation. Additional 
statistical analysis is then used to assess sensitivity of output distributions to the 

many different input variables [1]. Engagement of statisticians as part of the PA 
team is crucial to successful distribution development, as also indicated in [2]. The 

challenges in specifying appropriate distributions are often site- and variable-
specific, although general considerations and strategies related to spatial and 

temporal scale apply across variables. 

This paper focuses on building a more formal and unified approach to developing 

distributions for model inputs, focusing on the important step of recognizing the 
importance of spatial and temporal scales. This requires an understanding of spatial 
and temporal scales of the PA model relative to how values from the distributions 

are used in model simulations, and then requires strategies to scale the available 
data and information to match that of the PA model. That is, the distributions 

should reflect use of the data to inform a distribution at the scale driven by the 
model, and not be driven only by the scale of available data. Alignment of data 
scales to model scales for a PA model usually involves upscaling data to the spatial 

and temporal domain of interest for the model. By contrast, downscaling is often 
used in the spatial component of climate change modeling where the data represent 

integration over large spatial domains and need to be re-aligned to local levels of 
interest. Upscaling and downscaling both fall under the same general change-of-
scale statistical framework. Recent developments in the field of statistics present 

Bayesian hierarchical models as a coherent and rigorous framework for addressing 

change-of-scale problems [3-5]. 

A general strategy for explicitly acknowledging and incorporating the issue of 
scaling is introduced and explained within the context of a tangible PA input 

variable: soil temperature. The hierarchical statistical modeling framework is 
introduced for the change-of-scale problem, with a focus on the conceptual ideas 

behind it, rather than the theoretical statistical details. Some statistical notation is 
introduced to facilitate communication across disciplines, but the main points of the 

paper do not depend on the notation. 

UNDERSTANDING THE CHANGE-OF-SCALE PROBLEM 

In the field of statistics, the problem of moving between different spatio-temporal 
scales is typically called the change-of-support (COS) problem, although in other 

disciplines it is often called change-of-scale (as used in this paper), downscaling 
and/or upscaling, or in geography, the modifiable areal unit problem (MAUP). It is a 
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problem often not adequately addressed, in part because the statistical methods for 
addressing COS are still evolving. PA modeling is usually associated with data 

collected in relatively short time periods and over relatively small spatial scales, but 
those data are needed to inform models that are structured to address large spatial 

and temporal scales. Consequently, PA modeling typically has a need for effective 
upscaling. If upscaling is not performed, then input distributions may carry greater 
uncertainty than is reasonable for the scale of the model, possibly leading to 

disposal decisions that are unnecessarily conservative and potentially wasteful of 
resources. If upscaling is not performed, or is not performed properly, then the 

subsequent probabilistic simulation and sensitivity analysis are compromised in a 

classic example of “garbage in, garbage out”. 

Conceptually, upscaling requires some form of integration across time, space, or 
both, often leading to the use of averaging that addresses assumptions of the PA 

model such as linearity, homogeneity, and stationarity. Under assumptions that 
justify averaging, upscaling is not difficult mathematically. However, the degree of 
upscaling relative to the data and potential lack of trust in the assumptions given 

the degree can create real challenges, both conceptually and from a practice 
perspective when trying to quantify such uncertainty. In general, the greater the 

degree of upscaling (the larger the difference between the data scale and the model 
scale), the more uncertainty is introduced through extrapolation and assumptions 
used to justify the extrapolation, and translating this uncertainty quantitatively into 

added variance in the distribution is the challenge. An approach is desired that is 
flexible enough to not depend on strict, and possibly unrealistic assumptions such 

as homogeneity over space and/or time or linear relationships between model 
inputs and outputs. Therefore, the focus should first be on general strategies and 
frameworks, rather than mathematical details of how to do the scaling that depend 

on the specific assumptions being made. Hierarchical statistical modeling provides 
such a conceptual structure for formally aligning spatial and temporal scales of the 

data with those of the model. 

A PROPOSED STRATEGY 

In this section, a general strategy is proposed as a starting point for distribution 

development that explicitly addresses scale from the beginning. The strategy is 
consistent with the hierarchical statistical modeling framework described later in the 
paper, but is presented first to provide a more accessible introduction and context 

for the presentation of the hierarchical modeling information. 

Steps of the Strategy 

The proposed strategy requires a thorough understanding of the PA computer 

model and how a random value taken from the distribution of the input variable will 
be propagated through the PA model, which depends on the CSM and assumptions 
made in translating the CSM into the PA model. This information is used to inform 

the rest of the distribution development process by defining the ultimate goal for 
what should be captured in the distribution. This is a different approach than 

starting first from data and not explicitly defining the scale(s) of the PA model. 
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The proposed strategy is presented in a series of seven steps that are briefly 
explained and then revisited in the context of an example. The first three steps 

should be considered independently of any data and/or information collected to 
inform the distributions. The last three steps involve connecting the information 

from the first three with available data or information. 

 

Step 1: Identify scales of the PA model (temporal and spatial) 

Step 2: List spatial and temporal sources of variability 
Step 3: Describe distributional goal in words 
Step 4: Assemble data/information 

Step 5: Scale data to align with scales of PA model from Step 1 
Step 6: Develop statistical model to upscale and incorporate uncertainty 

Step 7: Identify and incorporate additional sources of uncertainty if necessary 

It is difficult to describe distribution development issues as they apply to input 

variables in general, because there are fundamental differences among different 
types of input variables that necessitate different considerations (e.g. soil 
temperature versus geochemistry inputs like Kds). Therefore, the details in the 

steps are not exhaustive for all inputs and additional thought may be required to 

identify input-specific considerations. 

Step 1: Identify the spatial and temporal scales at which a specific input variable is 
used (or modeled) within the given PA model. This involves asking two questions: 

(1) what spatial region is a single random draw from the distribution representing 
in the model, and (2) how long is the time period over which the random draw will 

be used (i.e. held constant)? At this point, the information should simply be 

conditional on the current modeling assumptions. 

Step 2: Create a list of the spatial and temporal sources of physical variability that 
should be captured in the distribution given the scale identified in Step 1. It may be 

helpful to start with a list of as many physical sources as can be thought of and 
then select only those that are still relevant at the model scales and under the 
assumptions of the model. Physical sources of variability are those that would 

persist even if full knowledge were available about the system at that scale. 

Identification of physical sources of variability should take into account what is 
included or excluded in the structure of the model. For example, different elements 
or species may be specified to have their own distributions as part of the model 

structure, or groups of elements may share a distribution when they are similar 
enough and not treated differently within the model structure. For distributions 

meant to cover multiple elements, those elements should be explicitly stated and 
any differences described. Such information may help in decisions about how 
missing model structure should, or should not, be captured in distributions by 

increasing the variance of the distribution, and therefore is part of the more general 
problem of considering when it is justifiable to include physical variability in an 

input distribution as opposed to incorporating further structure into the model. 
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Identification of physical constraints on the input variable is also important as part 
of this step. Physical restrictions on possible values should be explicitly described, 

and can involve numerical bounds (e.g. saturation can range from 0 to 1), or can 
involve relationships with other input variables (e.g. saturated water content cannot 

exceed porosity). 

Step 3: Combine the information from Step 1 and Step 2 to describe, in words, the 

goal for the distribution being developed. The words should describe the target 
spatial and temporal scales, as well as sources of physical variability that are 

relevant at those scales. The specific distributional form and values of the 
parameters (e.g. mean and variance) are not specified, but the goal is described in 
words. Obvious sources of uncertainty related to obtaining the distributional goal 

can also be described at this point, such as uncertainty related to estimation of the 
mean at the identified scale(s) of interest. Incorporation of additional uncertainty is 

discussed in Step 6. 

The goal, or target, for the distribution is now identified and the next step is to 

align available data with the scale of the distributional goal identified in words in 
Step 3. Collecting or finding data representing the scale of interest is ideal, though 

not often realistic; hence scaling is needed to transform the data and other 

information to a scale that is relevant to the goal described in Step 3. 

Step 4: Collect data and other information regarding the input variable. Explicitly 
identify and record the spatial and temporal scales associated with available data or 

other information. Different information sources will not necessarily be on the same 
scale, so scale identification must occur separately for each source. The scale can 
just be described in words for each source. If expert elicitation and/or professional 

judgment are used, care should be taken to explicitly identify the scale at which 
information is elicited, and if Steps 1 through 3 are undertaken first, it can improve 

the quality of information obtained in the elicitation. 

Step 5: Under the assumptions and scales of the PA model, upscale (or downscale) 

the available information to align with the scales identified in Step 1. Under 
common assumptions, such as homogeneity, stationarity, and linearity, it is typical 
to employ averaging as the mathematical means to achieve the scaling; making 

methods more accessible when these assumptions are not in effect is on-going 
work. Under the simplest scenario where enough site-specific data exist to inform 

the appropriate scale, this step might result in a distribution of averages at the 
appropriate scale (e.g. annual averages). A normal distribution might be 

appropriate as the form of this distribution, particularly for large scales, with mean 
and variance estimated from the data on the relevant scale. A value from this 
distribution should represent a realistic value of the input variable to use in a model 

run. Sources of uncertainty are formally incorporated in Step 6, though it is often 
helpful to combine Steps 5 and 6 at least to account for basic uncertainty in 

estimating a mean. 

Step 6: If not already incorporated, account for uncertainty due to estimation of the 

mean and variance of the distribution in Step 5. The easiest source of uncertainty 
to incorporate using standard statistical techniques is that due to sample size. That 
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is, assuming a random sample from the spatial area and time period of interest, the 
magnitude of uncertainty depends on the sample size and this can be easily 

quantified using standard statistical methods. This source of uncertainty can easily 
be incorporated into the distribution in Step 5 through the framework of predictive 

distributions, which are commonly used in statistics for making predictions about a 
value of a variable at a new location or new time, beyond the specific context of the 
collected samples. The idea is to account for both uncertainty in the mean, and 

variability of potentially new measurements of the mean. Therefore, the variance of 
the predictive distribution is larger than the estimated distribution at the 

appropriate scale (e.g. annual averages). 

Step 7: Given the information gathered in the previous steps, identify additional 

sources of uncertainty that should be incorporated into the ultimate distribution as 
added variance. For example, this might be uncertainty in the assumption of 

homogeneity over the site related to the assumption that a limited sampling is 
representative of the entire site, or uncertainty in the assumption that the input 
variable will remain constant into the future under an assumption of stationarity. In 

general, this step requires assessing the degree of trust in the assumptions of the 
model for that scale, which are often based on the temporal or spatial “distance” 

between the scale of the data and information available to inform the distribution 
and the scale of the input in the PA model. After identifying the sources, consider 
the magnitudes of the uncertainty of each relative to the others, and relative to the 

physical variability described in Step 2 and captured in Step 5. It is difficult to 
quantify the adjustment to variance, such as through the use of an uncertainty 

multiplier, and this adjustment is usually based largely on expert opinion and 
professional judgment. Therefore, the variance of the ultimate distribution will likely 
be larger than the predictive distribution specified in Step 6 unless the additional 

sources of uncertainty are judged to be small relative to the variance in the 
predictive distribution, which may be the case for variables that are not expected to 

vary much over time or space. 

Not identified in the above steps is the potential iterative process of updating the 

model based on the considerations within the steps. That is, the process of 
explicitly laying out the assumptions can actually lead to revisions in the PA model 

if assumptions are called into question, in which case distribution development 
would go back to Step 1. The revisions would mostly likely be in the form of added 
structure to the model, which could be related to space (e.g. volume represented 

by a compartment), physical properties (e.g. different elements or species), or time 

(length of time steps). 

Soil Temperature Example 

The steps of the previous section are now revisited in the context of the soil 
temperature example. The goal for this section is not an exhaustive discussion of 

the distribution development, but an illustration of what can be considered for each 
of the steps described above. Soil temperature is an input variable to some PA 
models that is inherently both spatial and temporal, and is understandable across 

disciplines. The PA model in this example is assumed to be a 1-D column 
discretized with depth into compartments for vertical fate and contaminant 
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transport modeling. The example initially covers much smaller scales than typically 
encountered in PA models to illustrate the main points on a scale that can be 

directly informed by data. This serves as a path to considering extremely large 
temporal scales and the additional challenges that come with larger scales. 

Therefore, assume the example “PA model” will be run for one year and the random 
value of the soil temperature input from the distribution will be held constant over 
that time frame, and will be used in the computational model compartment 

representing the first two meters of soil below ground surface over the entire site 
(assume the site is a waste disposal region of area one hectare, or 10,000 m2). One 

year is clearly much smaller than the time scales typically considered for PA, but 

this is purely for illustration. 

Step 1: First, the distributional goal, or target, is identified from information about 
the conceptual PA model and how draws of the input will be used in running the 

model. The distributional goal is described in words in this step, before data are 
ever used (or even need to be collected). In the case of soil temperature, a single 
random draw from the distribution will be used to represent the soil temperature of 

a compartment of the PA model representing the first two meters of soil over the 
entire site, and held constant over one year. Therefore, the spatial scale of interest 

is the first two meters of soil over the entire 1-ha site, and the temporal scale of 
interest is one year. For another example, change in soil temperature as a function 

of climate change could be considered. 

Step 2: Examples of physical sources of spatial variability causing vertical and 

lateral heterogeneity are changes in materials (bedrock or unconsolidated soils), 
mineralogy, porosity, and saturation (factors that affect bulk thermal conductivity); 
differences due to aspect (angle of the surface relative to solar radiation); and 

ground cover types (e.g., plants, rock fragments, asphalt) with differing densities 
and albedo. These identified sources of variability should be evaluated for their 

relevance based on the scales identified in Step 1, and in doing so, it is clear that 
all of these sources of physical variability over space occur at a scale smaller than 

the first two meters with depth and laterally over the entire site. 

Spatially, the values captured in the distribution should be realistic to represent the 

entire site to a depth of two meters, making the mean soil temperature of that 
volume of soil the quantity of interest. The focus on the mean comes from the 
assumption in the modeling that one random value from the distribution can be 

used to represent the soil temperature of that volume for a run of the model. Data 
from the volume of interest, if available, can be used to estimate the mean over the 

site, with a distribution of the mean (or a sampling distribution of the average) 
used to quantify uncertainty in knowledge of the mean. The uncertainty depends on 
the amount of data available, whether the data can be treated as if they are a 

random sample from the area of interest, and how representative the data are 
judged to be of the entire volume of interest. The decision to use the mean should 

be supported by knowledge of the site or model assumptions, such as believing soil 
temperature is fairly homogenous across the site within the depth range and time 
frame of interest, that the response is linear, and that soil temperature is stationary 

both spatially and temporally. Note, if data are not available from the site of 



WM2017 Conference, March 5-9, 2017, Phoenix, Arizona, USA 

 

 

9 

interest, then the context of predicting the mean soil temperature for the site (at 

the identified spatial scale) from data collected elsewhere also becomes relevant. 

Using a distribution that includes physical sources of variability smaller than the 

scale of the model implies that when a random value is taken from the distribution, 
it will be used as if it represents the entire spatial region when really it only 
represents a potentially small part; thus the model is run at unrealistic values 

relative to the chosen scale. If there is justification to include smaller scale sources 
of variability, such as differences by depths within two meters for this example, 

then this may be an indication of a need for additional structure in the model. The 
appropriateness of using a wider distribution in place of additional model structure 
is context dependent and should be made by the team of subject matter experts 

and statisticians. That is, the decision to represent the upper two meters over the 
entire site as a single compartment implies that either the site is homogeneous 

enough to assume temperature is constant over that volume, or that identified 
sources of physical variability are not judged to be important enough to the system 
to model (such as differences in soil temperature due to aspect). For other inputs, 

such as Kds or KHs (air/water partition coefficients), it may be important to carefully 
consider the potential effects of lumping elements or species into a single 

distribution (e.g. Jordan et al. [6]). 

Sources of temporal physical variability include the daily and seasonal cycles 

through minimum and maximum ranges, as well as even longer potential episodes 
of periodic climate trending and/or climate change. From a temporal perspective, a 

random draw should be realistic to be held constant for one year, and therefore 
physical variability in soil temperature for scales less than one year (daily, weekly, 
monthly, seasonal variation) does not need to be captured in the distribution 

(assuming linearity in smaller scale responses). Values meant to represent an 
entire year (because they are held constant over an entire year) should come from 

a distribution of yearly averages. If, for example, seasonal variability is included as 
extra variability in the distribution, then the model will be run for the entire year at 
winter values or summer values when it is not realistic for an extreme seasonal 

temperature to be held constant for an entire year. If ignoring such variability 
raises flags, then the model structure of how individual draws are meant to 

represent a time period can be revisited. For example, it may be possible to 
construct the model so that new draws can be taken to cover smaller time steps 
over the run of the model, though this may cause challenges computationally and 

for the subsequent sensitivity analysis. 

For the soil temperature example, variability in annual averages does need to be 
captured because that is the identified scale of interest; this is a distribution 
capturing physical variability in average soil temperatures that would still exist even 

if all information were available for millions of years about average annual soil 
temperatures. The distribution will, however, be estimated from data and therefore 

there will also be uncertainty in the mean and variance of the distribution, and that 

uncertainty should be included as additional variance in the distribution. 

Step 3: The goal for this step is to combine the information from Step 1 and Step 2 
to explicitly describe the goal for the distribution (i.e., the distributional target). A 
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challenge for some input variables at this step, such as soil temperature, is to 
combine the spatial and temporal considerations into a single goal. For this 

example, the end distribution should capture uncertainty in estimating the mean 
annual soil temperature of the volume of soil in the upper two meters across the 

site, along with the physical variability expected in annual averages of the mean 
soil temperature. A predictive distribution for annual averages would allow a new 
realistic annual average to be drawn for each run of the model, while 

simultaneously accounting for uncertainty in estimating the mean. However, final 
decisions about how to capture the necessary information in a specific distribution 

are made after collecting relevant data or assessing the information available, 

which happens in the following steps. 

Step 4: In this step, data and information are gathered to inform the distribution. It 
is possible data could be designed and collected explicitly to inform site-specific 

distribution development, but it is more common that relevant data and information 
already available are gathered to inform initial distribution development. For the 
soil temperature example, suppose 25 years of data from a single sensor are 

available at a depth of one meter below the surface, at a single location within the 
site. Soil temperature is recorded from the sensor every 12 hours (in the afternoon 

and early morning) to capture the daily extremes. Temporally, data are available on 
a scale smaller than the annual scale identified in previous steps, but they can 
easily be aggregated to annual averages to match the scale of the model. Spatially, 

data are available from only a single location and a single depth, clearly 
representing a small spatial area relative to the spatial region the distribution 

should represent in the model. With one location, there is no physical averaging 
over space as would be considered with multiple soil samples, so a distribution for 
the mean cannot be developed purely over space. Figure 1 shows some illustrative 

simulated data. 
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Figure 1. Example soil temperatures reported at different scales over three of the 

25 years of simulated data (orange=true soil temperatures every 12 hours, light-
blue=measured soil temperature every 12 hrs, red=weekly averages, 

purple=monthly averages, dark-blue=3 month averages, green=yearly average). 

Steps 5 and 6: The temporal and spatial components represent different problems, 

the former where there are data to directly inform the needed scale, and the latter 
where the upscaling must be justified based on assumptions. For the temporal 

component, there are 25 annual averages available to directly inform the 
distribution at the appropriate scale. Therefore, the 25 observations of annual 
averages can be used to estimate a predictive distribution of annual averages to 

combine the physical variability in annual averages with uncertainty in estimating 
the parameters of that distribution. This can be accomplished using standard 

statistical tools in most cases, and note the scale of the predictive distribution 

should match the identified scale(s) used in the model. 

For the spatial component, the upscaling to the entire site must be based 
completely on assumptions, the simplest of which is to assume the site is 
homogenous in terms of soil temperature. Another possibility is to assume that 

variability in annual averages over time can be used as a surrogate for variability in 
the annual average over space; this is convenient because the distribution of the 

mean in space and time is then estimated with the same data, but it also requires 
assumptions that are difficult to check and justify. There is no single correct choice 

here, but the assumptions used to justify the choice should be stated and defended 
as much as is possible, based on expert judgment, knowledge of the site, and 
information gathered during development of the conceptual site model. In this 

example, data exist from the site of interest so predicting at a new (i.e. different) 
location is not of interest; however, uncertainty due to extrapolation (predicting 

values for a site with no data of its own) should be a consideration when data are 

only available from other locations. 
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Step 7: As described in the previous paragraph, having data from only a single 
location when the model scale is an entire volume over the site forces reliance on 

assumptions to go ahead with distribution development and the assumptions should 
be justified based on expert knowledge and professional judgment. A lack of trust 

in an assumption should be translated into additional variance in the distribution; a 
major challenge of distribution development is quantifying the extent to which the 
variability identified in Steps 5 and 6 should be increased to account for sources of 

uncertainty in assumptions. For this example, there is uncertainty in the 
assumption of homogeneity over space — is the site homogeneous enough in terms 

of soil temperature to use a single location to estimate the mean? Or, is the 
variability in the annual averages over time similar enough to cover the variability 
that would be expected if multiple locations were monitored? Even in the temporal 

context, are the 25 years of data of annual averages trusted to represent annual 
variability in the far future, if that is necessary for the model? Again, there is no 

single correct choice, with the decision ideally being made by a team including 
subject matter experts and statisticians. A productive attitude toward distribution 
development is not finding the correct distribution, but a distribution that is justified 

based on the information and expertise available — it is not realistic for every team 
to represent the current state of knowledge about an input variable with the same 

distribution. 

At this point, it is worth realizing that often distribution developers find themselves 

facing a single spatial location or perhaps few locations, as well as data from a 
much shorter time period than the time scale of PA models (i.e. it is not possible to 

have multiple 10,000-year averages with which to inform a distribution). How much 
trust is there in assumptions that must be made to obtain a distribution of 100-yr 
or 1000-yr averages in soil temperature in the future? There is nothing inherently 

wrong with making the needed assumption, but uncertainty inserted by doing so 
should be reflected in the distributions to the extent possible. Additionally, site data 

might not even be available and distribution development must rely on data from 
other sites, additional information found in the literature, or expert opinion. While 
the challenges are many and will often force considerations beyond those explicitly 

addressed in this paper and example, the ideas presented here are meant to help 
provide some structure to approaching the development. This more formal path to 

distribution development is technically defensible, and is hence superior to 
arbitrarily using data distributions that do not attend to the spatial and temporal 

scaling issues. 

Scaling for Distributions and Simpson’s Paradox 

This section provides additional detail to illustrate issues related to scale and why 
they are important for distribution development. The information builds on 

discussions presented in Step 2, and ties them to a well-known result within 
Statistics called Simpson’s paradox (a.k.a ecological fallacy or ecological effect). 

Cressie and Wikle [3] discuss the connections between change-of-scale problems 
and Simpson’s paradox, and suggest the usefulness of the connection in 

understanding the problem. 
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Simpson’s paradox describes a situation where different relationships exist, or are 
observed, at different scales. Simpson [7] demonstrated the “paradox” with a 

contingency table, showing that a positive relationship between two variables 
displayed in a 2-way table can actually reverse to a negative relationship when a 

third variable is used to further divide the tables. A famous example discussed by 
Meng [8] and Cressie and Wikle [3] describes results from a comparison of open 
surgery and ultrasound in the treatment of kidney stones. In data reported by 

Charig et al. [9], open surgery was successful in 78% of the cases and ultrasound 
was successful in 83% of the cases. However, when the size of the stone was taken 

into account, the success rate for open surgery on small stones was 93% compared 
to 87% for ultrasound, and likewise for large stones it was 73% compared to 69%, 
respectively. The “paradox” name is given because people intuitively expect the 

results to follow the aggregated pattern. This example highlights the general 
importance of considering the appropriate scale, or what should be conditioned on 

(like size of stone), for any statistical analysis, and this should be dictated by the 
question of interest or goal of the analysis. Cressie and Wikle [3] further illustrate 

the point in an environmental context: 

“…day trading on stock markets, based on economic relationships 

estimated from quarterly trade figures, would probably lead to 
financial ruin. In a spatial setting, regional climate data may warn, 
correctly, of a future drought in the Northwest United States (states of 

Washington and Oregon). However, local orographic effects may favor 
certain parts of the Willamette Valley in Oregon to the point where 

above-average rainfall is consistently received there.” 

How does this relate to change-of-scale problems for PA modeling? It is helpful to 

continue with the soil temperature example, where data are available over time at 
small scales. Clearly, annual averages hide all smaller-scale fluctuations (e.g. 

seasonal differences – see Figure 1), and therefore tell a different story about soil 
temperature than summaries at smaller scales. It is helpful to actually look at 
distributions of averages at four different scales (daily, weekly, monthly, and 

yearly) using the 25 years of data from the soil temperature example, without the 
added complications of attempting to account for sources of uncertainty (Figure 2). 

The averages of the distributions are the same (about 13°C), but the change in 
shape as scale increases is clear (note the number of observations going into the 
histograms is also changing), and the variance is far smaller in yearly averages 

than it is in the smaller scale distributions that capture seasonal fluctuations. 

The proportion of daily, weekly, and monthly averages less than 12°C is close to 
0.33, whereas it is zero for yearly averages. There are relatively few weeks, and 
especially months, that actually have a soil temperature near the values in the 

yearly soil temperature distribution. That is, soil temperature aggregated to the 
yearly scale does not tell the same story as soil temperature at the daily or monthly 

scale. Therefore, it would be a mistake to attempt to capture what is going on at 
the monthly scale using yearly summaries; and a mistake to use yearly averages to 
capture a behavior of monthly temperatures. This may seem intuitive and obvious 

for this tangible example, but it gets more complicated as the scales of interest are 
farther from those of the data. The degree to which the stories will match at 
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different scales depends on how homogeneous the process is. For the example, soil 
temperature is not homogenous within a year in the example, though if soil 

temperatures were taken from a location near the equator, the monthly and annual 
story might be similar and the assumption of homogeneity is clearly more justified. 

The usefulness of a model, and associated distributions, depend on identifying and 

acknowledging appropriate scales. 

The take-home message for PA distribution development is that averages, or 
relationships among variables, observed within a particular group (or at a particular 

scale), do not necessarily remain the same when groups are aggregated or 
disaggregated (or scale is changed). Therefore, it takes creativity and statistical 
work to carefully assess the implications of the use of different spatial and/or 

temporal scales for the particular scientific endeavor. Instead of assuming the 
relationships within subgroups (or smaller scales) are relevant to larger scales, or 

vice-versa, explicit statistical modeling should be used to account for such change 
of scale differences. And, in the absence of site-specific data to support such formal 
modeling, literature review, expert opinion and professional judgment must be 

relied on to incorporate additional information and its associated uncertainty. 

 

Figure 2. Histograms of daily, weekly, monthly, and yearly averages from the entire 

25 year data set where three years were shown in Figure 1. The bin width is 0.25°C 

for all histograms and the x-axis scale is held constant. 

A FRAMEWORK FOR MOVING ACROSS SCALES 

Statisticians have been working toward developing flexible statistical methods to 
deal with the change-of-scale problem, and hierarchical modeling provides a natural 
framework for addressing the problem [3, 4]. This section presents hierarchical 

modeling concepts in a very general sense and connects these to the needs in PA 
modeling. References and connections are made to the soil temperature example 

when relevant, and while the information in this section is presented with alternate 
language, the ideas are consistent with those underlying the strategy presented in 

the previous sections. 
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Thinking in Terms of Hierarchical Statistical Models 

Hierarchical models provide a very general framework for incorporating natural 
levels of model structure and the uncertainty associated with each. The 

“hierarchical” refers to the simultaneous modeling of the different levels by taking 
advantage of the hierarchy to model a level conditional on knowledge of other 
levels. The conditioning simplifies complicated problems by breaking them down 

into manageable steps by modeling one level at a time, after conditioning on 
others. Conceptually, it can be thought of as simplifying the process of modeling by 

breaking it down into a sequence of manageable steps, rather than attempting to 

tackle it as one large problem. 

Berliner [5] introduces a relatively simple idea in the context of hierarchical models 
that has led to many statistical and scientific developments. The idea is to 

efficiently combine the model for the observable data [𝑑𝑎𝑡𝑎] with the model for 

some underlying and unobservable “process” [𝑝𝑟𝑜𝑐𝑒𝑠𝑠] using hierarchical modeling. 

The term “process” is commonly used in the Statistics literature as a very vague 
term simply meant to capture a higher conceptual level of a model that the 

collected data and information are meant to inform. In the context of the soil 
temperature example, the “process” of interest is defined, for the current PA model, 
as the true distribution of annual averages over the spatial area and going out 

thousands of years into the future. The problem is placed in a hierarchical 
framework by combining conditional distributions in a way that follows the natural 

hierarchy. The model for the data is considered conditional on the model for the 
process, which greatly simplifies the problem (conceptually and mathematically) 
when modeling potential outcomes of data assuming the process generating the 

data is known. Then, the process is modeled, again by taking advantage of 
conditioning to consider the process conditional on unknown parameters defining it. 

Finally the unknown parameters used to define the process part of the model need 
to be assigned distributions reflecting current knowledge in the parameters. To 

simplify notation, the square bracket notation for models and distributions is 

adopted here; for example, the distribution of the data is denoted [𝑑𝑎𝑡𝑎], and the 

distribution of the data given some assumed process is denoted as [𝑑𝑎𝑡𝑎|𝑝𝑟𝑜𝑐𝑒𝑠𝑠] 
(read “the distribution of the data given the process”). Using this notation, the 

ideas in this paragraph are formalized in Eq. 1, 

[𝑑𝑎𝑡𝑎, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠] =
[𝑑𝑎𝑡𝑎 | 𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠][𝑝𝑟𝑜𝑐𝑒𝑠𝑠| 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠][𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠].     (Eq. 1) 

The elegant idea of conditioning in this way has been used to tackle very difficult 
problems in many disciplines, and can involve many more levels than described 

here. To simplify notation, letters are typically used in place of the words, with 

𝑑𝑎𝑡𝑎 = 𝑍, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 𝑌, and 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 𝜃, so Eq. 1 is rewritten as 

[𝑍, 𝑌, 𝜃] = [𝑍|𝑌, 𝜃][𝑌|𝜃][𝜃].         (Eq. 2) 

Usually, the goal is to make conclusions about the process model and its 
parameters, which is accomplished using the distribution conditional on (or “given”) 
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the observed data, denoted [𝑌, 𝜃|𝑍]. This is termed a posterior distribution, and can 

be obtained (up to a proportionality constant) using the right side of Eq. 2. 

[𝑌, 𝜃|𝑍] ∝ [𝑍|𝑌, 𝜃][𝑌|𝜃][𝜃].         (Eq. 3) 

Another distribution often of interest is that of [𝑌|𝑍], obtained after integrating the 

posterior distribution in Eq. 3 over 𝜃. This distribution is termed a posterior 

predictive distribution; the goal is to use the distribution of 𝑌 given all available 

information in 𝑍. 

Hierarchical Models and Change-of-Scale 

Change-of-scale discussions in a statistical context typically refer to the support of 

a random variable. Support can be thought of as a more formal mathematical term 
of scale and both terms are used in this section. A crucial addition to the notation 

presented in the previous subsection is the incorporation of a letter (𝑀) to denote 
the scale at which the variable is being considered [3, 4]. That is, in the hierarchical 

𝑑𝑎𝑡𝑎 − 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 − 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 framework, the initial focus should be on identifying the 

scale 𝑀 at which 𝑌 is needed and then on the data and information available to 

inform the identified scale for 𝑌. The added notation explicitly acknowledges the 

scale of both the desired Y and the available data 𝑍, and easily incorporates the 
fact that different data sources can have different supports (or scales) that can be 

finer or coarser than 𝑀 (e.g. 𝑍(𝐴) and 𝑍(𝑃) can be used to inform 𝑌(𝑀)). This is in 

contrast to simply thinking about 𝑌 and 𝑍 without reference to scale, as done in 

the previous subsection. 

The stochastic process 𝑌(𝑀) with support 𝑀 describes the general 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑌 after 

it is integrated over region 𝑀: 
1

|𝑀|
∫ 𝑌(𝑢)𝑑𝑢

𝑀
. Practically, the support is the spatial 

and/or temporal resolution at which the process is being investigated (i.e. the level 

of aggregation or the scale). For example, in the context of time, 𝑀 might be one 

year (as in the soil temperature example) so that 𝑌(𝑀) is defined by integrating the 

temporal process annually to match the scale 𝑀 of the model. The end goal 

depends on 𝑀. For example, changes in the scale of the PA model will change the 

desired support from 𝑀 to something different, such as 𝑃 =  1000 years, and then 

𝑌(𝑃) would be of interest instead of 𝑌(𝑀). 

The scale at which the data are available is usually different from the desired scale 

for the model (i.e. 𝑍(𝑀) is not available, but 𝑍(𝐴), 𝑍(𝐷), and 𝑍(𝐻) may be). The 

importance of accounting for scale really means that attention should be paid to 

extracting information from 𝑍(𝐴), for example, to inform 𝑌(𝑀), rather than 

mistakenly using 𝑌(𝐴) in the model simply because data are available with support 

𝐴. Accounting for scales should be an explicit step within the distribution 

development process, as described in earlier sections of this paper. 

Connections to PA Modeling 

Cressie and Wikle [3] describe the practical and statistical aspects of the problem in 

a contemporary way. By approaching the problem from a coherent probabilistic 
viewpoint through use of formal statistical hierarchical modeling, they are able to 
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build spatio-temporal statistical models allowing for scientific inferences at various 
spatial and temporal scales. They also see the possibilities of better meshing of 

spatial and temporal statistical models with physical models, which they term 
scientifically-based dynamic models. The approach is clearly useful in data-rich 

settings with strong scientific buy-in to underlying physical models. The PA setting, 
however, is typically data-poor instead of data-rich. Therefore, the immediate 
benefit of these methods to PA is not to replace the current PA modeling strategy, 

but instead to improve the stochastic, or probabilistic, part of the model by 
formalizing the strategy of developing probability distributions for inputs. There is 

also value in becoming familiar with basic language and ideas, because it is possible 
that PA modeling may adopt more of the principles underlying “scientifically-based 
dynamic models” as it evolves. For now, borrowing the general framework to work 

on the change-of-support problem within the current PA modeling framework 

provides a convenient and needed started point. 

To make the connection to PA modeling, notation is extended to include numerical 

subscripts on 𝑌 and 𝑍 to distinguish among different input variables and different 

sources of information for a particular input variable. For example, 𝑌1(𝑀) refers to 

input variable 1 at scale M, and 𝑍1,2(𝐴) refers to the second source data, available 

at scale A, to inform the distribution of 𝑌1(𝑀) (the distributional goal or target as 

described in previous sections).  

The observable data and information available at different scales is used to inform 

the input distributions at the PA model scale, as shown in Figure 3. In the figure, 𝑍s 
represent different sources of information with associated scale given in 

parentheses (letters higher in the alphabet represent larger scales) and 𝑌s 
represent the variables whose distribution we desire to use in the PA model. The 

goal is to pay attention to scale so that the distributional goal for the input 𝑌 is on 

the scale matching the PA model (i.e. 𝑌(𝑀) in this case), and then the data and 

information are scaled to match 𝑀 as well. The distribution for a 𝑌 is conditional on 

the data and information potentially available at different scales. 
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Figure 3. Conceptual diagram connecting probabilistic PA models to the hierarchical 

modeling framework. 

While 𝑀 is used to broadly represent the scale of the input as used in the PA 
model, it may not be the same for all inputs, and the notation could be further 
developed to differentiate between the temporal and spatial scales (some inputs 
may share a temporal scale, but differ in their spatial scale given the structure of 

the PA model). Related to the strategies presented earlier in the paper, a 𝑌𝑗(𝑀) 

alone can be thought of as the distributional goal or target, where the scale of 
interest is defined by the underlying PA model. A specific distributional form and 
values of the parameters (e.g. normal with specific mean and variance) is not 

specified until assessing available data and other information. In reality, [𝑌𝑗(𝑀)] is 

not attainable, so instead it is developed given available data and/or other 

information (e.g. 𝑍𝑗,𝑖(𝐴) and 𝑍𝑗,𝑘(𝐵)). That is, [𝑌𝑗(𝑀)|𝑍𝑗,𝑖(𝐴), 𝑍𝑗,𝑘(𝐵)] captures, as best 

possible, the current state of knowledge regarding the input variable at the desired 

scale. Even more generally, the distributional goal can be denoted as [𝑌𝑗(𝑀)|state of 

knowledge]. Therefore, as described previously, the challenge is to combine 

information from multiple scales to inform the input variable distribution on a yet 
another potentially different scale, and to do this in a rigorous and defensible 

manner. 

The objectives of this paper are to clarify the goal for PA distribution development, 

and to make the goal more explicit and reachable by explicitly acknowledging and 

accounting for scale through appropriate statistical modeling. 

DISCUSSION 

While scale is the focus of this paper, there are certainly other challenges in 
distribution development that deserve mention and future attention, and many are 

related to the problems of scale. 

PA Model 

Scale = 

M 

𝑍1,3(𝐹) 

𝑍1,2(𝐶) 

𝑍1,1(𝐴) 
𝒀𝟏(𝑴)|𝑍1,1(𝐴), 𝑍1,2(𝐶), 𝑍1,3(𝐹) 

𝑍2,2(𝐶) 𝑍2,1(𝐵) 

𝒀𝟐(𝑴)|𝑍2,1(𝐵), 𝑍2,2(𝐶) 

𝑍3,1(𝐾) 

𝑍3,2(𝐷) 

𝑍3,3(𝐴) 

𝒀𝟑(𝑴)|𝑍3,1(𝐾), 𝑍3,2(𝐷), 𝑍3,3(𝐴) 
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Types of information available to inform PA input distributions fall on a continuum 
of relevance in information, from site-specific data to possibly obscure literature 

sources, and also cover expert elicitation and professional judgment. Data from 
different literature sources or experts will differ regarding overall quality of 

information, quantity of information, and relevance of the information to the site 
[6], each of which should be viewed in the context of scales. Formal incorporation 
of such characteristics of data and information is a needed area of attention for PA 

distribution development. 

As mentioned previously, the idea of using, or at least conceptualizing, predictive 
distributions at a scale that matches the model may be a way to proceed if values 
used in the PA model represent times or locations not directly informed by available 

data. Predictive distributions allow formal combining of distributions describing 
physical variability (from data after scaling) and the distributions describing 

uncertainty in the mean, or other unknowns (given available data). It also easily 
extends to formal incorporation of prior distributions reflecting the current state of 
knowledge in inputs, or the mean of inputs, before incorporating new data. A 

challenge for many inputs comes from the fact that PA models are currently run at 
large time scales, and predictive distributions are harder to conceptualize at large 

time scales with no data to directly support them at the identified scale. 

CONCLUSIONS 

This paper highlights the importance of considering scale and introduces statistical 

hierarchical modeling as a conceptual framework to formalize the scaling problem in 
the context of performance assessments. The goal is to describe useful strategies 
and help create a coherent framework that can naturally account for changing 

scales to facilitate work and discussion regarding the role of scaling in distribution 
development. An additional goal is to document distributional development 

considerations and strategies, as an important step toward a unified and consistent 
approach (e.g. [6]). A conceptual framework is a first step in making progress in 
addressing scale explicitly across the PA community. A strong background in 

statistics is not needed to benefit from the conceptual approach, but is needed to 
implement this statistical strategy. What is critical is that statisticians and scientist 

or subject matter experts work together to develop a probabilistic PA model that 
addresses the upscaling needs given the data and the temporal and spatial domain 

and structure of the PA model. 

The example of soil temperature illustrates challenges commonly arising in 

distribution development and serves to provide a tangible context within which to 
discuss much larger challenges. This work raises awareness of timely and important 
issues that must be addressed to continue improving risk and performance 

assessments. Although some simple efforts at scaling have been attempted in the 
past for probabilistic performance assessment model inputs, these examples show 

how a hierarchical Bayesian structure can be used to more formally account for 
temporal and spatial scaling. This is critical for improving the way performance 

assessment models are used to inform decision-making. 
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